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Al~raet- -A three-layer model for solid-liquid flow in horizontal pipes is proposed. This model overcomes 
the limitations of the two-layer model. The model predictions exhibit satisfactory agreement with the 
experimental data and existing correlations. 
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INTRODUCTION 

The flow of solid-liquid mixtures in horizontal pipes has attracted considerable attention in recent 
years. It is a very complex flow, due to the presence of the two phases, and is thus quite different 
from single-phase flow. Since the solid particles tend to settle at the bottom of the pipe various 
flow patterns may be observed, depending on the mixture flow rate. 

Many investigators have tried to develop methods for predicting the characteristics of 
solid-liquid flow. Two main approaches have been employed: the first is to correlate empirical data, 
possibly using some semitheoretical reasonings (e.g. Newitt et  al. 1955; Zandi & Govatos 1967; 
Turian & Yuan 1977; and many others); the second is to develop theoretical approaches based on 
phenomenological modeling, such as the two-layer model of Wilson (1976, 1988), Wilson & Pugh 
(1988) and Televantos et  al. (1979) or other analyses such as those of Roco & Shook (1985), Hsu 
et  al. (1989) and many others. Usually the theoretical models are quite difficult to implement for 
practical use, while the empirical correlations have a limited range of applicability. 

A two-layer model for the prediction of flow patterns and pressure drop was presented by Doron 
et  al. (1987). This model is very simple to apply to any set of operational conditions. Its results 
are quite satisfactory, in spite of the underlying simplifying assumptions. 

The main limitation of the Doron et  al. (1987) two-layer model is its inability to predict 
accurately enough the existence of a stationary bed at low flow rates. Indeed, there are cases when 
a stationary bed is observed, yet the model results indicate flow with a moving bed. This also leads 
to reduced reliability of the pressure drop results for low flow rates (where a stationary bed can 
be expected). An attempt to solve this shortcoming is presented in this paper, by introducing a 
three-layer model. 

M O D E L  D E S C R I P T I O N  

Suppose a two-phase solid-liquid mixture flows in a horizontal pipe. If the slurry flow rate is 
high enough, all the solid particles will be suspended. If the flow rate is reduced, the solid particles 
whose density is higher than that of the carrier fluid, tend to settle and agglomerate at the bottom 
of the pipe, forming a moving deposit, above which flows a heterogeneous mixture. This behaviour 
led to the two-layer model of Doron et  al. (1987). Decreasing the flow rate further causes the 
moving bed height to increase while its mean velocity decreases. According to the two-layer model, 
the bed becomes stationary when the sum of the driving forces acting on the bed is lower than the 
sum of the forces opposing the bed motion. Although the two-layer model performs quite well for 
flow with a moving bed, it fails in many cases to predict the existence of a stationary bed (which 
is indeed observed experimentally). It should be noted, that for low mixture flow rates the mean 
velocities attributed to the moving bed are very low so that the motion may not be observed in 
reality. 
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Observations in our laboratory of the flow of solid-liquid mixtures at low flow rates indicate 
that while the upper strata of the bed may be moving, the lower strata may be stationary. Thus, 
it is reasonable that at low bed velocities the particles at the bottom get "stuck" and cannot be 
"dragged" by the bed. This leads to the description of the flow by means of a three-layer model 
(figure 1), where the bed is actually composed of two layers. The height of the stationary layer is 
such that the velocity of the moving layer above it is at the particular minimal value which is 
required for the motion of the particles (i.e. the minimal velocity which causes "stuck" particles 
to renew their motion). The upper portion of the pipe is occupied by a heterogeneous mixture. 

Minimal Bed Velocity 
To obtain the minimal velocity of the moving bed, which is a central feature of the three-layer 

model, as it determines the existence of the three layers, consider the solid particles in the lowermost 
stratum of the moving layer. Figure 1 presents schematically such a particle, which rests in the 
"trough" between adjacent particles of the upper part of the stationary bed. The particle is assumed 
to be at the verge of rolling. In this situation the driving torque (which arises from the drag exerted 
by the moving bed layer on the particle) and the opposing torque (which arises from the weight 
of the particle and the moving bed particles) acting on it, must balance. As the magnitudes of these 
torques depend on the velocity of the moving bed, it can be extracted from the torque balance. 

The driving force, Fo, results from the drag exerted by the surrounding medium (i.e. the moving 
bed layer): 

FD = ½PL U~CDAp, [1] 

where PL is the density of the carrier liquid, U~ is the critical bed velocity, Co is the drag coefficient 
for the particle (based on the particle diameter, dp, and U~). Ap is the area upon which the drag 
force acts, i.e. the projection on a plane normal to the flow direction of the upper part of the 
particle, which protrudes from the neighboring particles (see figure 1). Hence: 

,_.,2 ,.s2{~ "i- n'~ =0.763d~. [2] 

The torque balance is performed for the point (or axis) of contact of the particle and its neighbors 
in the downstream direction (denoted by "O" in figure 1). Hence the perpendicular distance to the 
line of action of the deriving force is 

dp{ .  n 0.01373. Lo=5- s'n3+ [3] 
/ 

The opposing torque is due to the submerged weight of the particle and the solid partices in the 
bed layer pressing on it. The average number of solid particles whose weight is to be considered 
is 

N = Cmb Ymb -- dp F 1, [4] 
a. 

where Ymb is the height of the moving bed layer (see figure 2) and Cmb is the moving bed 

Flow heterogeneous F ~  
directi;n layer 

moving bed 

stationary bed 

i Fo~o 

I 

Figure 1. Forces on a particle at the upper stratum of the stationary bed. 
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Figure 2. Schematic presentation of the three-layer model; geometry, velocities and shear stresses. 

concentration (assumed to be Crab = 0.52, for cubic packing). The submerged weight of a particle is 

~rc(p s -- pL)gdp, [5] Wp i 3 

where g is the gravitational acceleration and the total opposing force is 

- I -~  Ymb ] [6] 

The perpendicular distance from the line of action of the opposing force to the center of rotation, 
"O", is 

d p .  n 
Lopp = ~- sm ~ .  [71 

Equating the driving torque (FDLD) and the opposing torque (FoppLopp) yields 

0.779(ps- pL)gdp Crab ymb [8] 

U~ is the velocity of the moving bed, for which the particles at its bottom are at the verge of rolling. 
Thus, it is the minimal possible value for the mean velocity of the moving bed. Now suppose that 
the operational conditions are such that a moving bed with mean velocity Ub is predicted. As the 
slurry flow rate is reduced, Ub decreases. If it becomes smaller than U~, a bottom stationary layer 
is formed, so that the mean velocity of the remaining moving bed layer, Umb, is equal to U~. A 
further reduction of the slurry flow rate will induce a build-up of the stationary layer, and a decrease 
of the moving bed height, Ymb. Note that U~ decreases moderately as the slurry flow rate is reduced, 
since its magnitude is determined by Yrnb [8]. 

The Three-layer Model 
The whole flow is described by a three-layer model. The analysis is an extension of the analysis 

of Doron et al. (1987) for the two-layer model. Suppose that a solid-liquid mixture flows in a 
horizontal pipe at a flow rate such that there exist three layers in the pipe: a stationary bed at the 
bottom; a moving bed above it; and a heterogeneous mixture at the top (figure 2). Obviously, this 
is an idealization of the physical phenomenon, which assigns mean values to the thicknesses and 
velocities of the layers. 

Continuity 
Two continuity equations are written for the two phases: 

for the solid particles, 

and 

for the liquid phase, 

Uh Ch Ah "~- Umb Cmb Amb = Us Cs A ; [9] 

Uh(1 --  Ch)A h + Grab(1 -- Crab)Arab = Us(1 --  C~)A. [10] 
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In the above equations U is the axial velocity, C is the volumetric concentration of the solid particles 
and A is the pipe cross-sectional area; the subscripts h and mb denote the heterogeneous upper 
layer and the moving bed layer, respectively; Us is the slurry superficial (mean) velocity, Cs is the 
slurry input concentration and Ah and Amb are the cross-sectional areas occupied by the dispersed 
layer and the moving bed, respectively. Note, that based on the results of Doron & Barnea (1992), 
a no-slip assumption for the bed layers is employed in this formulation (i.e. the mean velocities 
of the solids and the liquid in each layer are equal). The mean velocity of the lowest layer is zero 
by definition. 

Momentum 
Force balances are written for the three layers. 
For the upper dispersed layer the heterogeneous mixture is considered as a pseudoliquid with 

effective properties. Hence: 

dP 
Ah ~ = -- Th Sh -- '~hmb Shrnb ; [11] 

where dP/dx is the pressure drop, and Zh and Thin b are the upper layer shear stress and the interracial 
shear stress acting on the perimeters Sh and Shmb, respectively (figure 2). 

The shear stress at the pipe circumference is 

zh=l phlUh[Uhfh [121 

and the shear stress at the interface between the upper layer and the moving bed is 

Thrnb = ½PhlUh- Umbl(Uh- Umb)fhmb; [13] 

Ph is the effective density of the upper layer, evaluated as 

Ph = psCh "~- P L (  1 - -  C h ) '  [14] 

where Ps and PL are the densities of the solid particles and the liquid, respectively. 
The friction coefficient at the pipe wall is found from 

f h  = ~h Ref #h, [15] 

where eh = 0.046,/~h = 0.02 for turbulent flow and eh = 16, flh = 1 for laminar flow. The Reynolds 
number Reh = Oh UhDh/#L is based on the hydraulic diameter Dh = 4Ah/(Sh + Smb). 

The friction coefficient at the interface is found from the Colebrook formula, which applies to 
rough-wall pipes (Streeter &Wylie 1975). It is multiplied by 2, to account for entrainment and 
deposition of particles, as suggested by Televantos et al. (1979). Hence: 

1 2.51 [161 
2 x / ~ b  = -0 .86  In + Reh 2X/~hmJ, 

where the roughness of the interface is assumed of the order of a particle diameter. 
For the moving bed layer: 

dP 
Arab ~ ~ - -  fmbsb - -  Tmbsb Smbsb - -  fmb  - -  Tmb Stub + ~'hmb Shrub, [17] 

where Fm~b is the dry friction force acting at the interface between the moving bed and the 
stationary bed S~,bsb; Z*,~b is the hydrodynamic shear stress acting on that interface; Fm~ is the dry 
friction force acting at the surface of contact of the moving bed with the pipe wall, Stub; and ~'rnb 
is the hydrodynamic shear acting on that surface. 

The shear stress between the moving bed and the pipe wall is expressed by 
1 

"£'mb ~ ipLlUmblUmbfmb [18] 

and the shear at the interface between the moving bed and the stationary bed is 
1 Zmbsb = iPLlUmblUmbfmb~b' [19] 
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The shear stresses are based on PL, following Doron & Barnea (1992). 
The friction coefficient at the pipe wall, fmb, is evaluated in a similar way to fh, [15], i.e. 

fmb m 0~mb Rem~mb [20] 

where ~mb = 0.046, /]mb = 0.02 for turbulent flow and amb = 16, //mb = 1 for laminar flow. The 
Reynolds number Remb=pLUmbDmb/#L is based on the hydraulic diameter Dmb=4Amb/ 
(Smb "a t- Smbsb ). 

The friction coefficient at the interface between the two bed layers, fmb~b, is evaluated similarly 
to fhmb, [16]: 

~ - -  -0.861n/-~--~ Remb 2/~m~b / . [21] 

Fmb, the dry friction force component at the pipe wall contributed by the moving bed solid particles, 
is composed of the effect of the submerged weight of the particles, Fwmb, and the transmission of 
stress from the interface, F,  mb: 

Fmb = Fwmb + F~mb. [22] 

Fwmb is calculated using a pseudohydrostatic pressure distribution which represents the submerged 
weight of the solid particles, an approximation applicable mainly to coarse particles. Integration 
of this distribution along the circumference Stub, yields: 

do,b f0.b+0. [D'2f[-2(ysb+Ymb) ~ 1]--  sin 7} d,, [23] 

where r/is the dry dynamic friction coefficient, g is the gravitational acceleration, D is the pipe 
diameter, Ymb is the height of the moving bed layer, Ysb is the height of the stationary bed layer 
and 0rob and 0,b are the central angles associated with them, respectively (see figure 2). 

The shear stress at the interface Sh~b is associated with a normal stress, ZN = Xhmb/tan(~b), where 
tan(~b) is the tangent of the angle of internal friction, as described first by Bagnold (1954). 
Following Bagnold's model, which is based on a constant shear stress assumption, the normal stress 
is transmitted through the packed bed, resulting in a contribution to the frictional resistance, F~mb: 

"[hmb arab 
F~mb = q tan(q~'------~" [24] 

Fm~b, the solid particles contribution to the friction force acting on the interface Smbsb, is found 
in a similar manner, i.e. 

Fmb,b = Fwm~b + F~mb,b, [25] 

where the effect of the submerged weight of the particles is 

Fwm~b = q (Ps -- PL)gCmbYmb Sm~b [26] 

and the transmission of stress from the interface is represented by 

Throb Srabsb 
Femln b = 17 tan(~b) " [27] 

The existence of a stationary bed is determined according to the minimal bed velocity criterion, 
described in the previous section. In addition, the force balance on the whole stationary bed layer 
has to be considered. In order for the bed not to slide as a whole, the sum of the driving forces 
must not exceed the maximal available resistance force [note, that this consideration serves as the 
criterion for the existence of a stationary bed in the two-layer model of Doron et al. (1987)]. This 
condition should be satisfied whenever a stationary bed is predicted; however, it is not part of the 
solution process. 
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The driving forces consist of the pressure gradient and the shear at the interface between the two 
bed layers. Hence: 

dP 
Asb dx -t- Fmbsb -t- rmbsbSmbsb ~ Fsb, [28] 

where A~b is the cross-sectional area of the stationary bed. F~b is the dry friction force acting on 
the periphery of the stationary bed, S~b. It is evaluated in a similar way to Fmb, [22]: 

F~b = Fwsb + F,~b, [29] 

where the two components are 

f ~'i/2 C /D\2r/2ysb --1) - sin ? ] d7 [301 

Am b 1 2 = ~nD - (Ah + Ash), 

S,b = D[n -- - I f2Ysb l)} 
k 

A,b= ( D ) 2 [ n -  c o s - ' ( ~ - ~ -  1 ) +  ( ~ - ~ -  l ) 7 1 - ( ~ - ~ - - 1  )2], [36] 

[37] 

[381 

[391 

and 

F~sb = qs '~hmbSsb [31] 
tan(~b) ' 

where ~s is the dry static friction coefficient and Csb is the concentration of the stationary bed. 

Diffusion 
The dispersion of the solid particles in the upper heterogeneous layer is assumed to be governed 

by the well-known diffusion equation 

d2C dC 
E -d-~yZ + w --d-fly =0,  [32] 

where y is the vertical coordinate, perpendicular to the pipe axis, E is the diffusion coefficient and 
w is the terminal settling velocity of the particles. Lateral variations of the concentration are 
neglected, and the concentration distribution is assumed one-dimensional. Taking the moving bed 
concentration, Crab, as the boundary condition, the concentration profile in the upper layer is 
obtained: 

C(y)=Cmbexp( w[y--(ymbC +Ysb)]); [33] 

W and E are evaluated in the same way as in Doron et al. (1987). Upon integration over the cross 
section of the upper layer, the equation for the mean concentration in that layer, Ch, is obtained: 

00mb+0sbexp [sin7 --sin(0mb+ 0sb)] COS27 dy- [34] 

All the geometrical properties which appear in the above equations can be expressed in terms 
of Ymb and Ysu for a given pipe diameter, D: 

~4h : t-~) ~COS- L I / o ' ~ 2 ~  IF2( Ymb -[- Ysb)~ IJ --[2(Ymo-]-Ysb) 1171 . . . .  [2(Ymodt" Ysb)112}, 

[351 
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Stub = n D  -- (Sh + S,b), [40] 

Shrub = D ; 1 -  [2(YmD+ Ysb) 1] 2, [41] 

Smbsb = D 1 -- -- 1 , [42] 

- , / 2 y s b  - -  1 ) _  COS-t[2(YmD+ Ysb) c o s  Omb = 1] [431 

and 

n . . . .  ,f2y~b ) 
= - - i . .  [441 

The three-layer model is thus described by a set of six equations, [8]-[11], [17] and [34] for the 
six unknowns Uh, Umb (the mean velocities of the upper layer and of the moving bed, respectively), 
Cb (the mean concentration of the upper layer), Ymb, Y~b (the heights of the moving bed and of the 
stationary bed, respectively) and dP/dx (the pressure gradient). 
Mode of solution 

We start the solution of the model equations by assuming that a three-layer flow pattern exists. 
In this case the whole six-equation set is to be solved. 

Adding [9] and [10] and rearranging terms yields: 

Substituting for Uh in [9]: 

and 

uh=u  + Umb b • 

UsCh A -{- UmbChAmb + UmbCmbAmb = U~C~A 

[451 

[46] 

UsCsA - -  UmbCmbAmb 
C h = [471 

UsA "[- UmbAmb 

All the terms on the right-hand side of [45] and [47] are functions of the unknowns Ymb, Ysb and 
Umb (as well as the operational conditions). By eliminating the pressure gradient term from [11] 
and [17] one obtains: 

'~h Sh + Throb Shrub Fmbsb + 'l~mbsb Srnbsb + Fmb -}- "{'rob Stub - -  't'hmb Shrub 
= [481 

Ah Arab 

In [48], too, all the variables can be expressed in terms of Ymb, Ysb and Umb. 
Thus, the set of equations to be solved consists of [8], [34] and [48], with Ymb, Ysb and Umb as 

the unknowns (note, that in this case Umb = U~). The three nonlinear equations are solved 
numerically. In order for the solution to be physically proper the resulting values of the bed heights, 
Ysb and Ymb, must be nonnegative and their sum must not exceed the pipe diameter. The value which 
is obtained for Umb from [8], is always lower than the moving bed velocity obtained by the two-layer 
model for the same operational conditions. Had it not been the case, the stationary bed height 
would assume a negative value. 

Given any set of operational conditions, for which a stationary bed exists, the flow characteristics 
can be found by the three-layer model: the heights of the moving bed, Ymb, and the stationary bed, 
Ysb, and the mean velocity of the moving bed, Umb, are found by solving the three-equation set, 
[8], [34] and [48]. The mean velocity of the upper heterogeneous layer, Uh, is found from [45], and 
its mean concentration, Ch, is found from [47]. The pressure gradient, dP/dx, is then found from 
[ll]. 

When the stationary bed layer vanishes (Ysb = 0), there is no solution to [8], [341 and [48] which 
satisfies the physical constraints and the flow consists of two layers only. In this case [8] becomes 
redundant, since it only determines the lower limit on Umb, but cannot be used to find its actual 
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value. The model now reduces to the five-equation set of the two-layer model (Doron et al. 1987): 
[9]-[11] and [34] remain unchanged, whereas [17] reduces to 

dP 
Arab d--x = - -Fmb --  ZmbSmb -f  ThmbShm b. [49] 

In addition, Ysb = 0 is introduced into all the geometrical parameters ([35]-[44]). 
After addition and substitution of terms in [9] and [10], one can express the mean velocities in 

the two layers by means of Ch and Ymb: 

A Cs --  Crab 
U h = U sAh C h _  Cm b [50] 

and 

A Q-C 
Umb -~- U s Arab Ch _ Cm ~ . [51] 

Eliminating the pressure term from [I I] and [49] yields 

Th Sh "Jr- Thm b Shrub Fmb + Tmb Stub -- Thin b Shrub 
= [52] 

Ah Amb ' 

where all the terms are functions of Ch, the mean concentration of the upper layer, and Ymb, the 
height of the moving bed. Thus the two-equation set--[34] and [52]--is to be solved numerically 
for Ch and Ymb. The mean velocities of the two layers, Uh and Umb, are then found from [50] and 
[51], respectively, and the pressure gradient, dP/dx, is calculated using [I I]. 

The transition to fully suspended flow (heterogeneous mixture and homogeneous mixture flow 
patterns) and the pressure gradient for such flow are treated in the way described in Doron et al. 
(1987). 

RESULTS 

The first most important feature of the three-layer model is that it does predict the existence of 
a stationary bed for all sets of operational conditions. Indeed this can be deduced from the 
postulation of a minimal possible moving bed velocity. Since at the limit of zero flow rate the bed 
velocity would be zero, there must be a range of slurry flow rates for which the two-layer model 
would assign a velocity to the moving bed which is lower than the threshold. This is the range of 
slurry flow rates where the three-layer model comes into effect. The value of the threshold velocity 
depends on the operational conditions. It may be very small for certain configurations so that in 
practical systems it would not be actually observed. However, it is always there. 

The most important characteristic of the flow is the pressure drop-flow rate relationship. 
Representative results of the model, showing the effect of the mixture concentration, are presented 
in figure 3 together with experimental data obtained in our laboratory. The curves represent the 
predicted dependence of the nondimensional pressure gradient i (expressed in terms of meters of 
water per meter of pipe length) on the mixture velocity U,. The theoretical pressure drop curves 
exhibit quite satisfactory agreement with the data. At the low flow rates where a stationary bed 
is predicted, the pressure drop is almost independent of the flow rate. This is a bit surprising, since 
the stationary bed becomes higher as the flow rate is reduced (as will be discussed later). However, 
the reduction (although slight) of the moving bed mean velocity as well as the drop in the 
heterogeneous layer mean velocity result in an almost constant pressure gradient. It is important 
to note, that only few data points could be taken for flow with a stationary bed. At these low flow 
rates it was very difficult to maintain control over the flow due to the setup of the experimental 
facility. Nevertheless, the data taken at Cs = 5.2% and 11% clearly support this trend. Similar 
behavior was observed by Takaoka et al. (1980) for sand slurries (figure 4). In that case, too, the 
pressure gradient varies only slightly when a stationary bed exists. Additional verification is 
difficult, since most investigations to date have not considered flow rates below the transition to 
flow with a stationary bed. 
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The three-layer model results constitute a significant improvement over the previous two-layer 
model (Doron et al. 1987). For  the operational conditions presented in figure 5, for example, the 
two-layer model predicts only flow with a moving bed. At the low flow rates this causes inaccurate 
estimates of  the pressure gradient (dotted lines in figure 5). The three-layer model, on the contrary, 
does predict the existence of  a stationary bed at the low flow rates, and the resulting pressure 
gradient is in better agreement with both the experimental data and the Turian & Yuan (1977) 
correlation, which is based on a very large bank of  experimental data (dashed lines in figure 5). 
Note, that the three-layer model converges to the two-layer model at the higher flow rates, where 
the two-layer model performs well. 

The effect of  other operational conditions, such as solids density and pipe diameter, has also been 
considered (figures 6 and 7). The solid lines represent the three-layer model results, whereas the 
dashed lines represent Turian & Yuan's (1977) correlation, and the dotted lines represent the 
two-layer model. In all cases a stationary bed is predicted at the low flow rates, which significantly 
improves the model performance as compared with the previous two-layer model. Note, that the 
improved performance is evident also for cases where the previous two-layer model can predict the 
existence of  a stationary bed. The model results were also compared to various sets of  experimental 
data, such as those of  Gillies et al. (1985) and Thomas (1979), figure 8. In both cases the data refer 
to flow with no stationary bed, and the data point with the lowest flow rate corresponds to the 
start-up of  the stationary bed. The agreement concerning the pressure gradient as well as the 
transition to flow with a stationary bed is quite satisfactory. 

Figure 9 presents the variation of  the bed height (lower part) and the mean moving bed velocity 
(upper part) with the slurry flow rate for a representative case. 

The solid line in the lower part of  figure 9 represents the overall height of  the bed ((Ymb + Ysb)/D) 
and the dashed line represents the height of  the stationary layer (Ysb/D). As could be well expected, 
the bed height decreases as the slurry flow rate is increased, and this trend applies to the stationary 
layer in particular. However, the moving layer becomes thicker as the slurry flow rate is increased, 
as long as the three layers exist. For  flow rates above the limit deposit velocity (i.e. when there 

E w 

.J 

a 5 

• =#~ 4. 

. . ~ _,v' . .  

" :4.. 7'  
stationary bed ~ , /  moving bed 

/ 
Fxp. doLo j 

• C=- 0.052 
• C s- 0.097 
• C=- 0.110 

Cs= 0. 1 5 6  

o.1 I.O 

U@ Ira/s] 

E 

== 
w 

. J  

l o* 

4- ÷ 

s t o t i o n a r y  

bed 

r , v , i i 

03 1.0 
U s {m/s] 

Figure 3. Effect of mixture concentration on the pressure 
3 gradient, Ps = 1240 kg/m, dp = 3 mm, D = 50 mm: 

three-layer model; --.--, transition from flow with a station- 
ary bed to flow with a moving bed. 

Figure 4. Comparison of experimental data of Takaoka et 
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C s = 10.3%; O, (2, = 15.4%; , three-layer model: --.--, 
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is no stationary bed), the trend is reversed and the moving layer becomes lower for higher velocities. 
It is interesting to note, that the total height of the two bed layers is quite close to the moving bed 
height as predicted by the previous two-layer model (dotted line). Nevertheless, as was shown 
earlier, the pressure gradient is affected very considerably by the type of bed and not just by its 
overall height. Similar behavior is obtained for other sets of operational conditions. 

As noted before, the mean velocity of the moving bed layer, Umb, is a function of the slurry flow 
rate. However, as can be seen in the upper part of figure 9, its dependence on the mixture velocity 
is weaker when a stationary bed exists, as compared to flow with a moving bed only as predicted 
by the two-layer model (dashed line). For this range of operational conditions, the moving bed 
velocity is determined mainly by the moving bed height (for given solid particles). As described 
in the previous paragraph, this height increases at a moderate rate until the limit deposit velocity 
is reached. At higher flow rates, the moving bed mean velocity is determined as part of the solution 
of the whole set of model equations, and its rate of growth is higher. 

The mixture velocity at the limit of existence of a stationary bed, i.e. the limit deposit velocity, 
ULD, is considered very important for practical purposes. Obviously, it is desired to avoid the 
formation of stationary deposits, hence it is often regarded as the minimal operating velocity. This 
velocity can be obtained from the three-layer model when the stationary bed height approaches 
zero. The value obtained for Ysb = 0 can be viewed as an upper limit since in practice a bed layer 
will be considered to vanish when its height is of the order of a particle diameter (and not zero). 

The dependence of the limit deposit velocity on the operational conditions can be investigated 
with the proposed model. Figure 10 presents the effect of mixture concentration on ULD. The model 
results are in fairly close agreement with the Turian et  al. (1987) expression and the correlation 
proposed by Gillies & Shock (1991), which are based on semitheoretical analysis with empirical 
constants fitting, and they all predict quite a small variation of ULD for these operational conditions 
(note, that Gillies & Shook's correlation predicts that ULD is independent of Cs for coarse particles). 
All the predicted results are higher than the experimental data. It is important to note that in the 
experiments the velocity was reduced until a stationary deposit was observed. It is quite reasonable 
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Figure 7. Effect of  pipe diameter on the pressure gradient, 
Ps = 1300 kg/m a, C,  = 1 0 % ,  d v = 1 mm: - - - ,  thr¢¢-layer 
model; . . . .  , two-layer model (Doron et al. 1987); - - - ,  
Turian & Yuan  (1977) correlation; - - . - - ,  transition from 

flow with a stationary bed to flow with a moving bed. 

Figure 8. Comparison with experimental data. Gillies et al. 
0985),  p s = 2 6 5 0 k g / m  3, d v = 0 . 3 3 5 m m ,  D = 2 6 0 m m :  
+ ,  C , = 1 5 % ;  O,  C s = 2 5 % .  A ,  Thomas  (1979), 
p , = 2 6 5 0 k g / m  2, d p = 0 . 1 5 0 m m ,  D = 1 0 5 m m ,  C~=12%:  

, three-layer model: - - . - - ,  transition from flow with a 
stationary bed to flow with a moving bed. 
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Figure 9. Dependence of  bed height and mean  moving bed 
velocity on the mixture velocity, Ps = 1240 kg/m 3, 
dp -- 3 mm,  D = 50mm,  C, = 10%: - - - ,  three-layer model; 

. . . .  , two-layer model (Doron et al. 1987). 
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Figure 10. Effect of  mixture concentration on the limit 
deposit velocity, p, = 1240 kg/m 3, dp = 3 mm,  D = 50 ram: 
- - - ,  three-layer model: . . . .  , Turian et al. (1987) corre- 
lation; . . . .  , Gillies & Shook (1991) correlation; + ,  exper- 

imental data. 
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Figure 11. Effect of solids density on the limit deposit 
velocity, C, = 1 0 % ,  dp = l m m ,  D = 5 0 m m :  - - - ,  three- 
layer model; . . . .  , Turian e t  al. (1987)  c o r r e l a t i o n ;  . . . .  , 

Gillies & Shook (1991) correlation. 
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Figure 12. Effect of pipe diameter on the limit deposit 
velocity, p,  = 1500 k g / m  3, dp = 1 m m ,  C,  = 10%:  
three-layer model; - - - ,  Turian e t  al. (1987)  correlation 

. . . .  , Gi l les  & S h o o k  (1991)  correlation. 

that reversing the procedure would have led to higher observed values. The limit of deposit is closely 
related to the dry friction, and the value of the static dry friction coefficient is higher than the 
dynamic one. Thus, it is plausible that a kind of hysteresis effect takes place. 

The effect of solids density on the limit deposit velocity is presented in figure 11. Heavier particles 
require higher driving torques to induce their motion. This can be the result of higher moving bed 
velocities, which in turn require higher mixture flow rates, i.e. higher ULD. 

The pipe diameter also affects the limit deposit velocity. For a larger pipe, the bed would be 
higher for the same mixture velocity. Thus, a larger mixture velocity would be required to induce 
the bed motion, i.e. ULD is higher (figure 12). The effect of the pipe diameter can also be deduced 
from figure 13, which presents the Durand parameter FL(FL = U L D / X / 2 g D ( s  - 1)) vs the solid 
particles diameter. According to Durand (1953) and other investigators such as Gillies & Shook 
(1991), ULD varies as the square root of the pipe diameter. Thus, Durand's data (dashed line) and 
Gillies & Shook's correlation (dotted line) are represented by single lines in figure 13. The 
dependence, as predicted by the model (solid lines in figure 13), is quite similar, but not exactly 
so. Thus, there are different lines for the different values of D. Such an observation was also made 
by Turian et  al. (1987), whose correlation is presented by the dashed-dotted lines in figure 13. The 
model results underpredict Durand's data for the limit deposit velocity (which could result from 
confusion between the limit deposit velocity and the velocity at the minimal pressure gradient, as 
explained in the next paragraph). However, they do show the trend of the dependence of ULD on 
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Figure 13. Effect of particle diameter on the Durand par- 
ameter FL, p ,  = 2 6 2 0 k g / m  ~, C,  = 1 0 % :  - - ,  three-layer 
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Figure 15. Effect of  solids density on the minimal pressure 
gradient and the corresponding mixture velocity, C, = 10%, 
dp = 1 mm,  D = 50 mm: - - - ,  three-layer model; - - - ,  
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Figure 16. Effect of  pipe diameter on the minimal pressure 
gradient and the corresponding mixture velocity, 
Ps = 1500 kg/m 3, d = 1 mm,  C a = 10%: ., three-layer 

model; , "~urian & Yuan  (1977) correlation. 

the particle size. It increases as the particle size is increased, passes through a maximum and 
approaches an almost constant value for large particles. 

Another interesting aspect of the flow is the minimal pressure gradient, imin and the mixture 
velocity associated with it, i.e. the critial velocity, Ur, in- These can also be found using the proposed 
model. Many investigators considered the minimum to occur at the limit deposit velocity, an 
observation which could arise from the very weak dependence of the pressure gradient on the flow 
rate in the stationary bed flow pattern (as noted before). However, this is not necessarily the case 
for any set of operational conditions. Actually, in most cases the limit deposit velocity is lower than 
the critical velocity, so that the minimum occurs in the moving-bed flow pattern range (although 
there are cases where it is in the stationary-bed flow pattern range). This confusion may be one 
of the reasons for the overprediction of the limit deposit velocity by the model. 

Figure 14 presents the effect of the mixture concentration on the minimal pressure gradient, imin, 
and the velocity at this minimum, U ~ .  i~n increases as the concentration is increased, as predicted 
by both the model results and the Turian & Yuan (1977) correlation, and verified by the 
experimental data obtained in our laboratory. This is reasonable, since the higher solids content 
would require more power for its transportation. U n  does not vary much with concentration, as 
can be observed from the model and from the experimental data. Turian & Yuan's (1977) 
correlation overpredicts the effect of the concentration on Umi~- 

The effect of the solids density on i ~  and Um~n is presented in figure 15. As could be well expected, 
both imp, and Um~ increase as the solids density is increased, since the settling effects are more 
significant. 

Figure 16 presents the effect of the pipe diameter. Since the limit deposit velocity is higher for 
larger pipes, so is the critical velocity. The minimal pressure gradient decreases as the pipe diameter 
is increased. Based on the experience with single-phase flow, where the pressure gradient required 
for transporting a given flow rate is lower if the pipe is larger, one would expect that the minimal 
pressure gradient would be reduced for larger diameter pipes. Such a trend can indeed be observed, 
but the reduction of im~n is not very pronounced, because of the increase of Umin with pipe size. 

SUMMARY 

A three-layer model for the prediction of the characteristics of solid-liquid mixtures in horizontal 
pipes has been presented. This model was developed in order to overcome the limitations of the 
Doron et al. (1987) two-layer model relating to flow with a stationary bed. 
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The proposed model treats the flow as being constituted of three layers--a stationary layer at 
the bottom, a moving bed layer above it and a heterogeneous mixture layer at the top. This is based 
on observations in the laboratory as well as analysis of the flow. The basic assumption underlying 
the model is the postulation of a minimal velocity which is required to induce the bed motion. If 
the mean velocity of the moving bed should be reduced below this limiting value, part of it would 
become stationary, forming the third layer, while the other part would be moving at this minimal 
velocity. The limiting value for the bed velocity is found by means of a torque balance on a particle 
at the interface between the stationary and the moving bed layers. 

The model results have been compared to experimental data and show satisfactory agreement 
which amounts to a significant improvement over the performance of the previous two-layer model. 
This has been shown for a variety of state variables for various sets of operational conditions. 
Obtaining still better results will be possible when better estimates of the various parameters such 
as interfacial friction coefficient, diffusion coefficient etc., are available. Moreover, introduction of 
position-dependent settling velocity and a diffusion coefficient could improve the model perform- 
ance. However, from our experience the increased accuracy does not justify the far more 
cumbersome computations required. 
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